Use case: Merging heterogeneous network measurement data

Jorge E. López de Vergara and Javier Aracil Jorge.lopez_vergara@uam.es Credits to Rubén García-Valcárcel, Iván González, Rafael Leira, Víctor Moreno, David Muelas, Javier Ramos, Paula Roquero, Carlos Vega and the rest of the HPCN-UAM team

SMART Internet Monitoring Study 3rd Workshop, Barcelona, Spain, 22nd April 2015

Contents

- Introduction
- Technologies
 - High-speed traffic measurements
 - Data integration alternatives
 - Hadoop for network measurements
 - Log processing
- Conclusions

Introduction

- Network measurement data can come from different sources
 - Network-oriented sources:
 - SNMP MIB instances
 - Netflow records
 - Pcap files
 - ...
 - Application-oriented sources:
 - Logs
 - Some standard (Apache web log)
 - Some proprietary (application specific)
 - Important to deal with encrypted traffic
 - $-\ensuremath{$ It is necessary to provide ways to merge them

High-speed traffic measurements

- Requirements
 - Capture at core networks
 - +10 Gbps links, sometimes virtualized
 - No packet drops
- Available off-the-shelf resources that help on this tough task
 - Intel +10G network cards
 - Intel DPDK
 - Other developments: HPCAP at UAM
 - Mellanox +10G network cards
 - Mellanox Messaging Accelerator (VMA)
 - Multicore processors
 - CPU affinity and isolation for key tasks
 - Lots of RAM memory
 - Use of hugepages and mmap

High-speed traffic measurements

Data integration alternatives

SQL databases

- Pros: reliable, normalized schemas, consistent with defined constraints
- Cons: slow, need to use materialized views to go faster, creating materialized views is costly and sometimes it can't be done concurrently
 → Not valid to deal with high-speed network measurements
- Plain files, no SQL
 - Pros: much faster
 - Cons: inconsistencies, lack of normalization
 → Necessary to deal with high-speed network measurements, but keeping in mind its limitations

Hadoop for network measurements

• DNS analysis

Log processing

- Requirements (real scenario):
 - Process 3M events per second (about 5 Gbps)
 - Put together application logs and network flows
 - Several disks in parallel are necessary to store the events at appropriate rate
 - Fast access to time series and aggregated statistics
 - \rightarrow What operators demand
 - Slower access to raw data
 - \rightarrow What IT analysts demand
- Elasticsearch and Kibana tools provide some support, but it is necessary to tune them

Kibana UI

Conclusions

- Need for different network measurement data sources
 - Combine network and application data
 - Necessary to find sources of problems
 - Is the slowdown caused by the network, the server or the application?
 - This question can only be answered if all information from different layers is provided and analyzed
- Huge amount of data → it is necessary to work with fast processing systems
- Availability of processing tools from the Cloud Computing community
 - It is necessary to adapt them to the network measurment processes

